Compare Coordinate Transformations with IRBEM and PySPEDAS
See Coordinate Systems for more information.
Julia's implementation yields results very close to IRBEM's and PySPEDAS's one, and is an order of magnitude faster. (Julia's one uses finer interpolation than IRBEM's and PySPEDAS's one to determine IGRF coefficients and sun's direction, leading to more accurate transformations.)
References: cotrans, test_cotrans.py - PySPEDAS
Setup
using PySPEDAS
using SPEDAS
using SPEDAS: irbem_cotrans
using PythonCall
using DimensionalData
using Chairmarks
using TestSetup using PySPEDAS test cases.
@py import pyspedas.cotrans_tools.tests.test_cotrans: CotransTestCases
pytest = CotransTestCases()
pytest.test_cotrans()
trange = ["2010-02-25/00:00:00", "2010-02-25/23:59:59"]
pyspedas.projects.themis.state(trange, probe="a", time_clip=true)
tha_pos = PySPEDAS.get_data("tha_pos") |> DimArray
tha_pos_gse = PySPEDAS.get_data("tha_pos_gse") |> DimArray
jl_tha_pos = set(tha_pos, Dim{:time}=>Ti)
jl_tha_pos_gse = set(tha_pos_gse, Dim{:time}=>Ti)┌ 1440×3 DimArray{Float32, 2} tha_pos_gse ┐
├─────────────────────────────────────────┴────────────────────────────── dims ┐
↓ Ti Sampled{UnixTimes.UnixTime} [2010-02-25T00:00:00.000000000, …, 2010-02-25T23:59:00.000000000] ForwardOrdered Irregular Points,
→ v_dim Sampled{Int32} [1, …, 3] ForwardOrdered Irregular Points
├──────────────────────────────────────────────────────────────────── metadata ┤
Dict{Any, Any} with 3 entries:
"data_att" => PyDict{String, Any}("coord_sys"=>"GSE", "units"=>"['km', 'k…
"CDF" => PyDict{String, Any}("VATT"=>PyDict{Any, Any}("CATDESC"=>"th…
"plot_options" => PyDict{String, Any}("xaxis_opt"=>PyDict{Any, Any}("axis_lab…
└──────────────────────────────────────────────────────────────────────────────┘
↓ → 1 2 3
2010-02-25T00:00:00.000000000 -30914.5 3310.4 -12103.8
⋮
2010-02-25T23:59:00.000000000 -31397.2 3474.4 -12112.3Validation
Transform coordinates using Julia native implementation, IRBEM, and PySPEDAS.
GEI <-> GEO
jl_tha_pos_geo = gei2geo(jl_tha_pos)
ir_tha_pos_geo = irbem_cotrans(jl_tha_pos', "GEI", "GEO")'
py_tha_pos_geo = PySPEDAS.get_data("tha_pos_new_geo") |> DimArray
@test jl_tha_pos_geo ≈ parent(py_tha_pos_geo)
@test jl_tha_pos_geo ≈ ir_tha_pos_geoTest PassedGEI <-> GSM
jl_tha_pos_gsm = gei2gsm(jl_tha_pos)
ir_tha_pos_gsm = irbem_cotrans(jl_tha_pos', "GEI", "GSM")'
pyspedas.cotrans("tha_pos", "tha_pos_new_gsm", coord_in="GEI", coord_out="GSM")
py_tha_pos_gsm = PySPEDAS.get_data("tha_pos_new_gsm") |> DimArray
@test isapprox(jl_tha_pos_gsm, parent(py_tha_pos_gsm), rtol=1e-5)
@test isapprox(jl_tha_pos_gsm, ir_tha_pos_gsm, rtol=1e-3)Test PassedGSE <-> GSM
jl_tha_pos_gsm = gse2gsm(jl_tha_pos_gse)
ir_tha_pos_gsm = irbem_cotrans(jl_tha_pos_gse', "GSE", "GSM")'
pyspedas.cotrans("tha_pos_gse", "tha_pos_new_gsm", coord_in="GSE", coord_out="GSM")
py_tha_pos_gsm = PySPEDAS.get_data("tha_pos_new_gsm") |> DimArray
@test isapprox(jl_tha_pos_gsm, parent(py_tha_pos_gsm), rtol=1e-5)
@test isapprox(jl_tha_pos_gsm, ir_tha_pos_gsm, rtol=1e-3)Test PassedValidate results: GEI/GEO transformations is quite accurate, while there are some differences in GSE/GSM transformations between Julia native implementation and IRBEM's one.
Benchmark
Depends on the transformation, Julia's implementation is about 10-40 times faster than IRBEM's (Fortran) implementation, and 20-50 times faster than PySPEDAS's (Python) implementation.
@b gei2geo($jl_tha_pos), irbem_cotrans($jl_tha_pos', "GEI", "GEO"), pyspedas.cotrans("tha_pos", "tha_pos_new_geo", coord_in="GEI", coord_out="GEO")(115.585 μs (4 allocs: 34.039 KiB), 2.378 ms (18 allocs: 101.703 KiB), 3.745 ms (14 allocs: 304 bytes))@b gei2gsm($jl_tha_pos), irbem_cotrans($jl_tha_pos', "GEI", "GSM"), pyspedas.cotrans("tha_pos", "tha_pos_new_gsm", coord_in="GEI", coord_out="GSM")(595.579 μs (4 allocs: 34.039 KiB), 4.659 ms (18 allocs: 101.703 KiB), 10.303 ms (14 allocs: 304 bytes))@b gse2gsm($jl_tha_pos_gse), irbem_cotrans($jl_tha_pos_gse', "GSE", "GSM"), pyspedas.cotrans("tha_pos_gse", "tha_pos_new_gsm", coord_in="GSE", coord_out="GSM")(707.688 μs (4 allocs: 34.039 KiB), 4.674 ms (18 allocs: 101.703 KiB), 7.286 ms (14 allocs: 304 bytes))